
Hans-Petter Halvorsen

https://www.halvorsen.blog

PHP REST API

Contents
• A short overview of APIs in general will be given.

– API is short for Application Programming Interface.
• Introduction to REST API.
• We will create a simple REST API using PHP.

– PHP is a server-side framework/programming language for creating
web pages and web contents.

– We will use MySQL as the Database system.
– We will use the phpMyAdmin tool to administrator and setup the

database.
– We will implement a CRUD REST API that Create, Read, Update and

Delete data in the Database.
– We will use Visual Studio Code as the Code editor.

• Finally, we will use Python to test the REST API.

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

API
• Application Programming Interface (API).
• An API is a way for two or more computer programs or

components to communicate with each other.
• It is a type of software interface that offers a service to

other software.
• APIs come in many shapes, some examples are SOAP

API, REST API, GraphQL API, etc.
• Most programming languages today have

components/libraries that can be used both to create
APIs and to consume APIs (using existing APIs).

Web API
• We can create/use APIs for internal use inside an Application or

between 2 or more Applications.
• Basically, an API can be just a Class with Methods that you use

several places inside an Application or that you share between
multiple Applications.

• A set of Stored Procedures in a Database can also be an API.
• When the Application that consume/use the API is on a local PC

and the API itself is located on a Server, we can talk about so-
called “Web APIs”.

• Such Web APIs also very often perform CRUD operations against a
Database located on the Web.

• Normally it is not allowed to connect directly to a Database located
in the Cloud from a local computer unless you configure and give
access to the IP addresses for those clients.

CRUD: Create, Read, Update, Delete Data

Web API
Clients

Database

Application

Server

Database

Server

API

Application

Clients

Application

Application

Cloud/Internet
/Network

Cloud/Internet
/Network

Normally it is not allowed to connect directly
to a Database located in the Cloud from a
local computer unless you configure and give
access to the IP addresses for those clients.

HTTP

REST API
• REST APIs (also known as RESTful APIs) has been the

standard when it comes to Web APIs.
• REST – is short for Representational State Transfer.
• REST APIs are based on the HTTP/HTTPS protocol.
• It is HTTP that controls all communication and traffic

between web pages and your local browser.

• REST APIs can be made in all kind of Web Frameworks/Web
Programming languages like PHP, ASP.NET, etc.

• You can also consume (use the API) in all types of
Programming Languages like Python, C#, etc.

REST API

Consumer
Producer

REST API

HTTP

The Application that
uses the REST API

Request

Response

HTTP/HTTPS
• HTTPS is not a separate protocol, but a combination of regular

HTTP over an encrypted SSL (Secure Sockets Layer) or TLS
(Transport Layer Security) connection.

• HTTP consists of different methods:
– GET – This method is used to retrieve information from the server.
– POST – This is used to send data to the server. Typically used to store

data from a web page (an HTTML Form) to ,e.g., a database.
– PUT – This is used to update information on the server.
– DELETE – This is used to delete information on the server.

• You usually refer to these four methods as CRUD operations
because they allow you to Create (POST), Read (GET), Update
(PUT), and Delete (DELETE) resources, such as information in a
database.

GET and POST are by far the most used of these HTTP methods

JSON
• When it comes to Web APIs and REST APIs

JSON is the standard for the data format.
• Example:

https://en.wikipedia.org/wiki/JSON

{

"Name": "John Wayne",

"Work": "Actor",

"Age": 52

"Children": [

"Lisa",

"Thomas",

"Knut"

]

}

https://en.wikipedia.org/wiki/JSON

REST API

Client Server

HTTP URL

JSON
Database

(or XML)

GET/POST/PUT/DELETE

REST APIResponse

Request

Application

PHP + MySQL
• You need to have a PHP + MySQL Environment

on your local computer on get access to it from
a server/Internet.

• For local installation you need to download and
install Apache, PHP and MySQL.

• You can get server access from many providers
(free or paid).

• I will use an internal LAMP server available for
employees and students at my University.

LAMP
• LAMP = Linux, Apache, MySQL, PHP

– PHP is the Programming Language
– MySQL is the Database System
– Apache is the Web Server software
– Linux is the operating system where the Web Server is

running
Each part in LAMP is free and open-source, so it is a
popular web hosting environment. You find also lots of
online documentation and a large community.

LAMP/PHP Web Hosting
• There exists hundreds/thousands of different

LAMP/PHP/MySQL Hosting Providers, some free
but mostly paid options.

• Hostinger - https://www.hostinger.no
• InfinityFree - https://www.infinityfree.com
• PRO ISP - https://www.proisp.no
• +++ (Just Google)

https://www.hostinger.no/
https://www.infinityfree.com/
https://www.proisp.no/

API Test Tools
• Postman

Homepage: https://www.postman.com
• Insomnia

Homepage: https://insomnia.rest

https://www.postman.com/
https://insomnia.rest/

API Summary
• Basically, Web APIs, REST APIs or HTTP APIs

are basically the same.
• It is just different names for the same.
• They all communicate via Internet and use

HTTP as communication protocol.
• And they use JSON (or sometimes XML) as

Data Format.

Hans-Petter Halvorsen

https://www.halvorsen.blog

PHP REST API
Example

Example
• We will start by creating a Database and

Table using MySQL.
• Then we will create the PHP code for the

REST API.
• Finaly we will test the API creating some

basic Python examples.

Tools
The following tool will be used in this example:
• PHP
• MySQL

– phpMyAdmin
• Visual Studio Code
• WinSCP
• Python

– Thonny Python Editor

Database

CREATE TABLE BOOK

(

BookId int PRIMARY KEY AUTO_INCREMENT,

Title varchar(100) NOT NULL,

Author varchar(100) NOT NULL,

Topic varchar(100) NOT NULL

);

We start by creating a simple Database Table, e.g.:

Database

insert into BOOK (Title, Author, Topic) values

('Web Apps, 'Elvis Presly', 'Programming');

insert into BOOK (Title, Author, Topic) values

('IoT and Cloud', 'John Wayne', 'IoT');

insert into BOOK (Title, Author, Topic) values

('C#', 'Rune Hansen', 'Programming');

We can also insert some data into the Table, e.g.:

phpMyAdmin

PHP
We can create 2 PHP files, e.g.:
• config.php

– This file will contain username, password, etc.
for the MySQL Server database.

• index.php
– This file contains the REST API itself with GET,

POST, PUT and DELETE functionality.

config.php
<?php

$host = 'localhost';

$dbname = 'your_database_name';

$username = 'your_username';

$password = 'your_password';

try {

$pdo = new PDO("mysql:host=$host;dbname=$dbname", $username, $password);

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

} catch (PDOException $e) {

die("Database connection failed: " . $e->getMessage());

}

?>

https://www.w3schools.com/php/php_mysql_connect.asp

Connect to your Database:

https://www.w3schools.com/php/php_mysql_connect.asp

Hans-Petter Halvorsen

https://www.halvorsen.blog

GET
This method is used to retrieve information from the server

index.php - GET
<?php

require_once 'config.php';

// Set the content type to JSON

header('Content-Type: application/json');

// Read operation (retrieve books)

$stmt = $pdo->query('SELECT * FROM BOOK');

$result = $stmt->fetchAll(PDO::FETCH_ASSOC);

echo json_encode($result);

?>

Visual Studio Code

WinSCP (FTP)

Test in Browser

Python - GET
import requests

url = "https://web01.usn.no/~hansha/"

response = requests.get(url)

print(response)

print(response.json())

Thonny – Running GET Script

<?php

require_once 'config.php';

// Set the content type to JSON

header('Content-Type: application/json');

// Handle HTTP methods

$method = $_SERVER['REQUEST_METHOD'];

switch ($method) {

case 'GET':

// Read operation (retrieve books)

$stmt = $pdo->query('SELECT * FROM BOOK');

$result = $stmt->fetchAll(PDO::FETCH_ASSOC);

echo json_encode($result);

break;

default:

// Invalid method

http_response_code(405);

echo json_encode(['error' => 'Method not allowed']);

break;

}

?>

We prepare for POST, etc. by
creating a switch statement

Hans-Petter Halvorsen

https://www.halvorsen.blog

POST
This method is used to send data to the server

PHP - POST
$method = $_SERVER['REQUEST_METHOD’];

..

case 'POST':

// Create operation (add a new book)

$json = file_get_contents('php://input');

$data = json_decode($json,true);

$title = $data['title'];

$author = $data['author'];

$topic = $data['topic'];

$stmt = $pdo->prepare('INSERT INTO BOOK (Title, Author, Topic) VALUES

(?, ?, ?)');

$stmt->execute([$title, $author, $topic]);

echo json_encode(['message' => 'New Book added successfully']);

break;

Python - POST
import requests

url = "https://web01.usn.no/~hansha/"

params = '{"title": "Arduino", "author": "Hans-Petter",

"topic": "IoT"}'

response = requests.post(url, params)

print(response)

print(response.json())

Running Python in Thonny editor

We can then either use phpMyAdmin
or the GET Python script to see that the
Database has been updated

Hans-Petter Halvorsen

https://www.halvorsen.blog

PUT
This method is used to update information on the server

PHP - PUT
$method = $_SERVER['REQUEST_METHOD’];

..

case 'PUT':

// Update operation (edit a book)

$json = file_get_contents('php://input');

$data = json_decode($json,true);

$id = $data['id'];

$title = $data['title'];

$author = $data['author'];

$topic = $data['topic'];

$stmt = $pdo->prepare('UPDATE BOOK SET Title=?, Author=?, Topic=? WHERE

BookId=?');

$stmt->execute([$title, $author, $topic, $id]);

echo json_encode(['message' => 'Book updated successfully']);

break;

Note! Your Apache/PHP Server
may have disabled the PUT
method for security reasons.

Python - PUT
import requests

url = "https://web01.usn.no/~hansha/"

headers = {

"User-Agent": "",

"Content-Type": "application/json"

}

data = '{"id": "28", "title": "Arduino3", "author": "Hans-Petter",

"topic": "IoT"}'

response = requests.put(url, headers=headers, data=data)

print(response)

print(response.json())

Hans-Petter Halvorsen

https://www.halvorsen.blog

DELETE
This method is used to delete information on the server

PHP - DELETE

$method = $_SERVER['REQUEST_METHOD’];

..

case 'DELETE':

// Delete operation (remove a book)

$json = file_get_contents('php://input');

$data = json_decode($json,true);

$id = $data['id’];

$stmt = $pdo->prepare('DELETE FROM BOOK WHERE BookId=?');

$stmt->execute([$id]);

echo json_encode(['message' => 'Book deleted successfully']);

break;

Note! Your Apache/PHP Server
may have disabled the DELETE
method for security reasons.

Python - DELETE
import requests

url = "https://web01.usn.no/~hansha/"

headers = {

"User-Agent": "",

"Content-Type": "application/json"

}

data = '{"id": "5"}'

response = requests.delete(url, headers=headers, data=data)

print(response)

print(response.json())

Summary
• We have created a simple REST API using PHP.
• We tested the REST API using Python.
• In general, we can use any kind of programming language to interact with

this API.
• E.g., we an create a Windows Forms Application in Visual Studio and C#.
• In that way we can insert, read, update or delete data in the remote

database from a local application.
• Normally you cannot directly interact with a remote SQL Database from

your local computer due to security reasons.
• There are lots of improvements to be made to make a better code

structure (create classes, etc.), make it more robust with error handling,
improved security, access control, etc. But I leave that to you to improve.

• The code is made simple to illustrate the basic principles creating and
using REST APIs.

References
• PHP Tutorial: https://www.w3schools.com/php
• MySQL Tutorial:

https://www.w3schools.com/mysql
• https://medium.com/@miladev95/how-to-

make-crud-rest-api-in-php-with-mysql-
5063ae4cc89

• Python & APIs:
https://realpython.com/python-api/

https://www.w3schools.com/php
https://www.w3schools.com/mysql
https://medium.com/@miladev95/how-to-make-crud-rest-api-in-php-with-mysql-5063ae4cc89
https://medium.com/@miladev95/how-to-make-crud-rest-api-in-php-with-mysql-5063ae4cc89
https://medium.com/@miladev95/how-to-make-crud-rest-api-in-php-with-mysql-5063ae4cc89
https://realpython.com/python-api/

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1: PHP REST API
	Slide 2: Contents

	Introduction
	Slide 3: Introduction
	Slide 4: API
	Slide 5: Web API
	Slide 6: Web API
	Slide 7: REST API
	Slide 8: REST API
	Slide 9: HTTP/HTTPS
	Slide 10: JSON
	Slide 11: REST API
	Slide 12: PHP + MySQL
	Slide 13: LAMP
	Slide 14: LAMP/PHP Web Hosting
	Slide 15: API Test Tools
	Slide 16: API Summary

	Example
	Slide 17: PHP REST API Example
	Slide 18: Example
	Slide 19: Tools
	Slide 20: Database
	Slide 21: Database
	Slide 22: phpMyAdmin
	Slide 23: PHP
	Slide 24: config.php

	GET
	Slide 25: GET
	Slide 26: index.php - GET
	Slide 27: Visual Studio Code
	Slide 28: WinSCP (FTP)
	Slide 29: Test in Browser
	Slide 30: Python - GET
	Slide 31: Thonny – Running GET Script
	Slide 32

	POST
	Slide 33: POST
	Slide 34: PHP - POST
	Slide 35: Python - POST
	Slide 36: Running Python in Thonny editor

	PUT
	Slide 37: PUT
	Slide 38: PHP - PUT
	Slide 39: Python - PUT

	DELETE
	Slide 40: DELETE
	Slide 41: PHP - DELETE
	Slide 42: Python - DELETE

	Finished
	Slide 43: Summary
	Slide 44: References
	Slide 45

